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Abstract
We present experimental results on the condensation of 4He atoms on the surface
of liquid 4He. We show that there is quantum condensation with the creation
of phonons and R+ rotons in one-to-one processes as atoms go into the Bose–
Einstein condensate. These phonon and R+ roton signals can be recognized
by their time of flight, their angular distribution and their dependence on
the ambient temperature. Condensing atoms also create ripplons with a high
probability. We derive rate equations for the growth of the ripplon density and
the ripplon decay by the creation of bulk phonons. During the atom pulse a
dynamic equilibrium is established. The low-energy phonons that are created
by ripplon–ripplon scattering can easily be detected and distinguished from the
phonons created by quantum condensation.

From measured data, estimates are made of the probabilities of creating
phonons, R+ rotons and ripplons in condensation processes as well as estimates
of the quantum evaporation probabilities of phonons and rotons.

We clearly detect R+ rotons directly with a bolometer in the liquid 4He
and show why the signal of R+ rotons is obscured by the low-energy phonon
signal when both the source and detector are in the liquid helium. Values of the
Kapitza conductance for the Zn bolometers are derived.

1. Introduction

In this paper we describe the processes that follow a 4He atom condensing onto the free surface
of liquid 4He. As this is the inverse process of evaporation, we might expect that excitations
are produced in the liquid. We know that all three types of excitations in liquid 4He can cause
quantum evaporation [1–3]. High-energy phonons, with energy h̄ω/kB > 10 K, and R+ rotons
readily eject 4He atoms from the surface of liquid 4He. R− rotons also create free atoms, but
with a much lower probability, and so are much harder to detect.

The characteristics of quantum evaporation are well established [4]. First it is a one-to-one
process: one excitation of the liquid 4He is annihilated at the free surface and one free atom is
created from the Bose–Einstein condensate. Second, energy is conserved. The energy of the
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Figure 1. The dispersion curve for liquid 4He showing the phonon, R− roton and R+ roton regions.

excitation goes in overcoming the binding energy of the atom in the liquid, εB = 7.16 K, and
the remainder is taken away as kinetic energy of the free atom, i.e.

h̄ω = εB + p2
4/2m4 (1)

where p4 is the momentum and m4 the mass of the free atom. The third characteristic is that
the parallel component of the wavevector is conserved: i.e.

q‖ = k‖ (2)

where q and k are wavevectors of the excitation and atom, respectively. This arises from the
translational invariance of the free liquid surface. The energy and wavevectors of an excitation
are related through the dispersion curve. This is a continuous curve which is divided into three
regions: phonons in the range 0 < q < 1.1 Å−1, R− rotons in the range 1.1 < q < 1.92 Å−1

and R+ rotons with q > 1.92 Å−1, see figure 1.
Compared to quantum evaporation, there has been much less work done on condensation

mainly because the experimental results are more difficult to interpret. Also the signals are
smaller due to the need to use a low flux of atoms so that flux-independent results are obtained.
Higher fluxes create too many ripplons which spoil the translational invariance of the surface.
The low sensitivity of the bolometer in the liquid to phonons and rotons also makes the signals
small.

There are several fundamental questions concerning atom condensation. First, are there
one-to-one processes, atom → phonon, atom → R+ roton and atom → R− roton, and if so
what is their probability? Second, are there other processes which are impossible in evaporation
experiments, such as one atom creating two bulk excitations? Third, what is the role of ripplons
which are copiously produced in condensation? Furthermore there is the question of whether
rotons can be detected in the liquid 4He by a solid detector, such as a bolometer.

The first measurements of the signals in the liquid 4He, created by a beam of condensing
atoms at 42◦ incidence [5], showed a very broad angular distribution which was interpreted as
one atom creating simultaneously a bulk excitation and ripplons. This interpretation became
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redundant when the angular distribution was measured with a higher angular resolution,
achieved by reducing the incident atom flux [6]. It was clear that the main beam of excitations,
created in the liquid 4He, is at the angle expected for one atom creating one R+ roton. The
reason for the low angular resolution at high atom fluxes is that the translational invariance of
the surface is broken by ripplons. The bulk excitations are then not created in narrow beams
at an angle, given by equation (2), relative to the mean plane of the surface. This spoiling of
the surface has been studied [7].

Atom beams incident on the free surface of liquid 4He have some probability of being
reflected as well as condensing. Edwards et al [8–10] have shown that the reflectivity is a
strong function of the perpendicular component of the wavevector, k⊥. This is due to quantum
reflection depending on the relative size of the perpendicular component of the wavelength of
the atom and the distance over which the surface potential changes. The surface appears more
abrupt for longer wavelengths and so gives a higher reflectivity. At normal incidence, for a
typical atom with energy ≈4 K, the reflectivity is very small, ≈10−5, and most of the atoms
condense. The measured reflectivity agrees with that calculated. The detected reflectivity is
specular, which shows no other excitation is involved as another excitation would carry away
energy and momentum. The specular reflectivity is reduced if too many ripplons are created.
This happens if the incident atom beam flux is too high, or if a second atom beam is used to
spoil the surface by creating ripplons [7].

However, at large angles to the normal, around 80◦, it is found for some particular atom
energies that the reflectivity is increased [11]. At these energies it is impossible to create
bulk phonons or rotons and conserve energy and the parallel component of the wavevector.
Now there are several channels for the interaction between an atom and the liquid helium
and if one channel closes, then the probabilities for the other possible channels increase. In
particular if a transmission channel closes then the reflectivity channel increases. The size of
the reflectivity change indicates that >1.5% of the incident atoms create phonons and >3%
create rotons. However, it must be remembered that the phonon energy is ≈8.4 K which is
lower than that used for quantum evaporation, and the roton created is at the roton minimum
which corresponds to zero group velocity and so again these rotons are not used in quantum
evaporation. We shall find that the probability for creating large wavevector R+ rotons is much
higher than 3% but for phonons it is ∼1%.

The broad picture presented in this paper is that the atoms in an atom beam at 45◦ incidence
and typical energies 2–6 K mostly condense and only a very small fraction of the atoms
are specularly reflected. About 0.6 of the beam creates ripplons and about 0.4 creates bulk
excitations in one-to-one processes. These are mainly rotons; relatively few phonons are
created. Many more phonons are produced by the decay of the ripplons. It is against this
background that we present our results. In section 2 we describe the experiment. In section 3
we present the measured angular distribution and its interpretation which is justified in the rest
of the paper. In section 4.1 we consider the phonons that are created in the bulk liquid by one-
to-one processes and in 4.2 the probability of these processes. This will lead on to section 4.3
where we analyse the creation of ripplons and their decay into bulk phonons. In section 4.4
the power dependency of these processes is discussed. In section 5.1 we discuss the creation
of R+ rotons and in 5.2 why they give a detectable signal on the bolometer. Conclusions are
drawn in section 6.

2. The experiment

The apparatus is the same as that used previously in the quantum evaporation experiments and
is described in detail in [4]. A schematic diagram of the arrangement is shown in figure 2.
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Figure 2. Schematic drawing of the apparatus. The atom and roton path lengths are 6.5 and 6.6 mm
respectively.

A 1 mm2 gold heater, on glass, is pulse heated for typically 2 µs. This heats the liquid
4He film covering the heater. Helium atoms are evaporated and are collimated into a beam
which is directed at the free liquid surface. The collimator aperture, cut in a mica sheet,
is 0.4 mm × 1.0 mm with the long dimension parallel to the axis of rotation. The heater is
4.5 mm from the collimator and 6.5 mm from the liquid surface. The path length from the
liquid surface to the bolometer is 6.6 mm and there is a similar collimator in this path. The
bolometer is superconducting Zn in a magnetic field which is kept at a constant temperature,
∼0.35 K, and hence constant resistance R0, by a fast electronic feedback circuit [12–14]. To
a reasonable approximation the detected power is given by W = V0δV/2R0, where V0/2 is
the quiescent voltage across the bolometer and δV is the signal.

Both the heater and bolometer can be rotated independently, in a vertical plane, by two
superconducting stepper motors. The angular positions are determined by potentiometers to
within ≈1◦. However, we estimate that the systematic uncertainty is ≈3◦. For most of the
data reported here the atom beam is at an angle of incidence of 45◦ to the normal. The liquid
level is set to within 0.1 mm of the rotation axis using a Karma resistance wire of 15 µm
diameter positioned at the required level [15]. The atom signal from the pulse-heated wire
disappears when the liquid level reaches the wire. Isotopically pure 4He is used to prevent
3He contamination of the surface. The temperature of the liquid helium is measured with a
calibrated Ge thermometer and unless otherwise stated all measurements were made at ambient
temperatures of ≈80 mK. The input heater power and pulse length have to be carefully chosen
for some of the signals as they disappear into the noise if the input energy is too high.

3. The angular distribution

Representative signals created by a pulsed atom beam at an angle of incidence of 45◦, at
different bolometer angles, are shown in figure 3. The peak heights of these signals vary
considerably. The largest is ≈30 times that of the smallest. At angles around 15◦, the signal
is large and has a relatively short duration. At this angle an atom can create a R+ roton in a
one-to-one process. At angles around 45◦, the signal is small and dispersed in time. We shall
see that this signal arises from ripplons created by the condensing atoms. At angles around
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Figure 3. Typical signals at different angles θ . φ = 45◦ and the heater pulse is 8 mW and 2 µs.
The signals are scaled vertically by the factors shown and are offset vertically.

61.2◦ the dispersed signal has a narrow peak superimposed on it. At this angle an atom can
create a phonon in a one-to-one process. This sharp signal starts at 92 µs which is the time
expected for this process. By 68◦, both these signals have decreased to half their size at 61.2◦.

In figure 4 we show the measured angular distribution created by a pulsed atom beam at
an angle of incidence of 45◦. To show the energy as a function of bolometer angle, signals
similar to those in figure 3 are integrated over time (50 < t < 190 µs) for this plot. The heater
pulse is 8 mW for 2 µs which is small enough for the angular dependence to be independent
of power, except for quantum condensed phonons which are a maximum at this power. These
power-dependent effects are described in section 4.4.

There are three components to the angular distribution. The largest peak, with a maximum
at 12◦, is at the angle expected for one atom creating one R+ roton. The middle-size peak,
around 50◦, does not correspond to the angle of any one-to-one process. We shall argue that
it is due to low-energy phonons created by ripplons. The smallest peak, around 60◦, has to be
expanded 10 times to show on the same scale as the other two peaks. The angle and the time
of flight of this peak identify it as the one atom to one phonon process with the phonon energy
>10 K.

There is no sign of any signal that can be ascribed to one atom to one R− roton process.
This signal should be around angles of −20◦. However, we should not be surprised that this
signal is absent as we found in quantum evaporation that one R− roton to one atom process
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Figure 4. The time-integrated signal from condensing atoms as a function of bolometer angle. The
diamonds are from integration over the narrow peak, see figure 3. The atom beam has an angle of
incidence φ = 45◦. The heater pulse is 8 mW for 2 µs.

has a probability which is two orders of magnitude lower than that of the one R+ roton to one
atom process [16].

4. Atom to phonon processes

4.1. One atom to one phonon

We now consider the sharp peak which is shown in figure 3 at angles of 61.2◦ and 68.0◦. We
identify this with the one atom to one phonon process with energy and parallel momentum
conserved at the free liquid surface. There are three characteristics that lead to this conclusion.
They are the time of flight, the angular distribution, and the dependence on the ambient
temperature of the liquid helium which causes scattering. We consider these in turn.

The incident atom flux has a range of energies, εa , so we might expect a range of phonons
to be created in one-to-one processes, with energies εp = εa + εB where εB = 7.16 K
is the latent heat per atom. The behaviour of the phonons is quite different depending on
whether εp is greater than, or εc is less than or equal to, 10.0 K. If εp < εc, then the created
phonon will spontaneously decay by the three phonon process (3pp). This happens very
rapidly with the inverse lifetime, given by (u +1)2k5

Bε5
p/240ρπ h̄4c5, [17], where we have used

kBεp/h̄ = ω = cq and u, ρ and c are the Gruneisen constant, the density and the velocity
of sound, respectively, for liquid helium. After a path length of 6.6 mm, these phonons
successively decay to εp ≈ 0.5 K energy and are spread over a cone of half angle ≈27◦ [18].
The effect of spreading the energy over such a large cone angle is that the flux on the bolometer
at any angle is very low. Also low-energy phonons create a much smaller signal as they have
a much lower transmission into the bolometer than the high-energy phonons. The probability
is down by a factor ≈10 [19, 20].

The signal from these phonons is also reduced as their time of arrival is very dispersed.
This is due to the range of atom energies εa < (εc − εB) which causes the atom flux to be
dispersed in time. The combined effects of space and time dispersion and the low detection
probability make these phonons undetectable even though we know where to look for their
fastest signal. For an atom with εa = (εc − εB) = 2.84 K travelling over 6.5 mm and for
phonons travelling at the ultrasonic velocity over 6.6 mm, the time is 59.8 + 27.3 = 87.1 µs.
There is no sign of such a signal at this time.



Quantum condensation of liquid 4He 4723

0.0

0.5

1.0

1.5

2.0

500 100 150 200

si
gn

al
 (

ar
b.

 u
ni

ts
)

time(µs)

C
30

0B
S

 a
nd

 C
21

1B
S

 s
ca

le
d 

ht

evaporation

condensation

Figure 5. Comparison of an evaporation and a condensation signal. The vertical line at 92 µs is
at the calculated time for 2.84 K atoms and 10 K phonons. The quantum evaporation signal arives
faster because some of the path in the liquid 4He is covered by faster low-energy phonons.

The situation is completely different for higher energy atoms. Those atoms with
εa > 2.84 K create phonons with εp > εc = 10.0 K which are completely stable against
spontaneous decay [21–23]. So once created, high-energy phonons propagate to the bolometer
ballistically, at their group velocity. These phonons only have an angular spreading due to the
geometry of the collimation, heater and bolometer. Also there is little time dispersion because
the change in atom velocity with energy εa is largely compensated by the change in phonon
group velocity with energy εp, i.e. the faster atoms create slower phonons. The much smaller
angular spreading and the small time dispersion mean that these phonons are in a more intense
flux. This, with the higher bolometer sensitivity to these phonons, makes them detectable.

The fastest time for this process is for atoms with εa = 3.9 K and the corresponding
phonons with εp = 11.1 K and group velocity 169 m s−1. This gives a time of 92 µs. This
agrees very well with the leading edge of the signal as is shown in figure 5. Also shown is the
signal for quantum evaporation with the same path lengths. The faster leading edge is due to
the high-energy phonons being created from the faster low-energy phonons just in front of the
free surface of the liquid helium [18, 24].

The angular distribution of the sharp phonon signal is shown in detail in figure 6. The
time-integrated signal is found by interpolating the broad signal in figure 5 underneath the
sharp signal and then integrating the sharp signal from 90 to 110 µs. At >70◦ the signal
arises from phonons with εp = 10 K and atoms at angles of incidence >45◦ but within the
collimation. Phonons with a higher energy give signals at smaller angles.

The dependence of the sharp signal on the ambient temperature of the liquid 4He, [26],
confirms its assignment as a one atom to one phonon process. In figure 7 we show the signal
at θ = 61.2◦ at three temperatures. We see that the sharp signal has nearly disappeared by
147 mK and at 192 mK there is no sign of it. This indicates that the excitations that cause
the sharp signal are ballistic high-energy phonons which are strongly scattered by the ambient
thermal phonons at T > 0.1 K but are ballistic at T < 80 mK. This is characteristic behaviour
of high-energy phonons, εp > εc = 10 K, and is markedly different to the behaviour of
low-energy phonons, εp ≈ 1 K and rotons. Fast R+ roton signals are attenuated by a factor of
≈0.5 at 150 mK compared to their low-temperature value but slow R+ rotons are detectable at
300 mK [27]. Low-energy phonons are only weakly attenuated at 300 mK.
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Figure 7. Condensation signals at various temperatures. φ = 45◦ , θ = 62◦ and the heater pulse is
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All the evidence indicates that the sharp signal, which broadly peaks around 60◦, is
due to high-energy phonons which are created by condensing atoms in one-to-one processes.
We presume that phonons with energy <10 K are also created in one-to-one processes but
their flux is too low to be detected. The probability of directly creating phonons in quantum
condensation process is very low, which we now quantify.

4.2. The probability of the atom–phonon process

In this section we estimate the probability, ppa, of a high-energy phonon, εp > 10 K,
evaporating an atom in a one-to-one process, and the probability, pap, of a condensing atom
creating a high-energy phonon in a one-to-one process. It should be recognized that many of
the values that we need are not known to within factors of two; nevertheless it is useful to make
the best estimates that are currently possible as ppa has been grossly overestimated [25] and
it has been argued that pap = ppa when there are only one-to-one processes between atoms,
phonons, R+ rotons and R− rotons, see equation (2) in [28].
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We take a quantum evaporation experiment in which there are no collimators [29]. This
is done because the high-energy phonons are strongly beamed in the direction normal to the
heater, which means that any collimation must be aligned with the beam, to within a degree, for
the peak signal to pass through. (We can use this property to show that the heater collimation
used in the condensation experiments was indeed aligned to this accuracy.) The distance
between the heater and bolometer is 13.1 mm and the liquid path length 8.1 mm. The heater
pulse is 10 mW and 300 ns, i.e. an input energy of Eh = 3.0 × 10−9 J. The time-integrated
energy detected in the bolometer is Eb = 4.2 × 10−14 J. From recent angular measurements
of the low- and high-energy phonons emitted by a heater, using similar heater pulses [31],
we estimate that fh = 0.31 of the heater energy gets converted to high-energy phonons.
This factor has an uncertainty associated with the extrapolation of the wings of the data to
±90◦. Again from the angular measurements and the area of the bolometer, we estimate the
fraction of the high-energy phonon beam that evaporates atoms which reach the bolometer is
fg = 2.0×10−2. This includes a factor of 1.18 increase in detected atoms due to the refraction
of the atoms towards the normal. The two factors fh and fg are not independent of each other;
in fact their product has less uncertainty than the factors have separately. Essentially all the
atoms that land on the helium film, which covers the bolometer, condense and we assume
that all the energy, kinetic and latent heat, goes to the bolometer. Equating the energies
gives

Eb = Eh fh fg ppa (3)

and substituting the values above gives ppa = 2.3 × 10−3.
To estimate the probability pap, we use data similar to that in figure 3 at 61.2◦. To extract

the sharp signal which is due to quantum condensation and starts at 92 µs, we interpolate the
time-dispersed signal under it. The data with heater pulses of power 7.94 mW and duration
1 µs are used as this power gives the maximum value of the ratio of detected energy to input
energy, see figure 10, and hence the maximum value of pap. At higher powers the surface of
the liquid helium is spoiled by the higher atom flux and this gives lower values of pap. With
the atom beam at 45◦ to the surface normal and the detector at 61.2◦, the detected energy is
Eb = 2.25 × 10−16 J for an input energy Eh = 7.94 × 10−9 J.

The collimator reduces the energy flux on the bolometer by the ratio of the solid angle
which the second collimator subtends at the heater to 2π sr. This factor must be multiplied by
2 to take into account that atoms are evaporated with a cosine distribution which makes the
atom flux in the forward direction twice as large as the average flux. Also it must be multiplied
by 0.7 as this is the fraction of the 1 mm2 heater area that contributes to the flux through the
collimation. These geometrical effects give a total factor hg = 1.23 × 10−3.

As we are considering phonons with energy εp > 10 K then only atoms with energy
εa > 3 K contribute to the signal. For a helium film at 1.13 K, we calculate that a fraction
hε = 0.51 of the evaporating flux of atoms have energy >3 K.

The Zn bolometer detects the created high-energy phonons with a probability ppb. The
value of this probability can be estimated from the measurements of the phonon transmission
into a solid [19, 20]. There are two channels for phonon transmission, the peak and background
channels. The former is the classical acoustic channel and only applies over a narrow critical
cone about the normal to the interface, on the liquid helium side. The transmission coefficient
normal to the interface is p(pk)

pb ≈ 4Z H/Zs where Z H and Zs are the acoustic impedances of
the helium and solid respectively. Z = ρc where ρ is the density and c is the velocity of sound.
In the solid the transmission is dominated by the transverse phonons so we use their velocity
and find p(pk)

pb = 7.9 × 10−3. The peak channel is independent of phonon frequency and the
direction of the transmission through the interface.
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In contrast the background channel applies at all angles of incidence on the helium side
of the interface. This channel is due to localized imperfections in the surface, which breaks
the translational invariance. The imperfections act as momentum reservoirs so the component
of momentum parallel to the surface is no longer conserved and phonons at all angles of
incidence have a probability of transmission through the interface. The transmission coefficient
is dependent on phonon energy and rises linearly from zero at zero energy to a constant value
at a phonon energy εp = 5 K. It depends on the direction of transmission and is higher from
solid to helium by a factor c2

s /c2
H than from helium to solid; for 4He and Zn this factor is 105.

The saturation value from solid to helium has been found to be 0.5 [20]. Hence we find that
the transmission probability from helium to zinc is

p(bg)

pb =
{

9.5 × 10−4εp, 0 < εp < 5 K
4.8 × 10−3, εp > 5 K

(4)

where εp is the phonon energy in kelvin.
As the Zn bolometer has a rough surface, the incident phonons mainly have angles of

incidence, to the local surface, which are outside of the critical cone, so the background
channel dominates the transmission. So we take ppb = 4.8 × 10−3 in this analysis for
phonons with εp > 10 K. It is worth noting that this value is the same order of magnitude as
p(pk)

pb = 7.9 × 10−3, so the surface roughness is not such a crucial issue for the detection of
high-energy phonons as it is for low-energy phonons. Equating energies we get

Eb = Ehhghε ppb pap (5)

and substituting the values above we find pap = 9.4 × 10−3.
We see that pap is ≈4 ppa from these estimates. However, many of the factors have

uncertainties of ×
÷2 so we do not rule out that pap = ppa as predicted under restrictive conditions

by Dalfovo et al [28].
The value of ppa is much smaller than our previous estimate [25]. Previously we thought

that high-energy phonons were directly injected into the helium by the heater and so very little
of the injected energy was in the form of phonons with εp > 10 K. Now we know that high-
energy phonons are created in the helium from low-energy phonons and this process is very
efficient [18, 24], and furthermore these phonons are strongly peaked in the forward direction.
At low heater powers they are in a cone of angle 4◦ [30, 31]. This means that the beam of
high-energy phonons, in quantum evaporation experiments, is much higher than previously
thought. Correspondingly the derived value of ppa is much smaller.

The present value of ppa is much smaller than theoretical estimates [32–36].

4.3. Atom to ripplons to phonons

We ascribe the time-dispersed signal, examples are shown in figure 3 at angles of 35◦ < θ <

70◦, to condensing atoms creating many ripplons which then interact and create phonons in
the liquid helium. Besides this signal being the most time-dispersed, its other characteristics
are

(a) it starts ≈7 µs earlier than the roton signal (see figure 4),
(b) it is not strongly affected by the ambient temperature (see figure 7) and
(c) it peaks at an angle θ ≈ 50◦ which is far from the roton angle and distinct from the angle

for the one atom to one phonon process.

Its peak height is only ≈0.05 of that of the rotons but is comparable to that of the high-energy
phonons. These characteristics clearly point to low-energy phonons which have a high velocity
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in the liquid and are only weakly scattered by thermal phonons. We now consider how they
are created.

One possibility might be that one atom creates two or more phonons in the liquid. This is
a higher order process than one atom creating one phonon and so can be reasonably expected
to have a lower probability. However, we see that the integrated energy in the time-dispersed
signal is more than an order of magnitude greater than the single phonon signal. So we conclude
that the origin of this signal is not the creation of two phonons.

Another possibility might be that an atom creates a phonon and a ripplon. This is another
higher order process. Also one would expect the phonons to be created at all angles in the liquid.
This is because the momentum of the ripplon can be similar to that of a low-energy phonon
and can be in any direction. To conserve parallel components of momentum, the phonon and
ripplon must have corresponding directions. The parallel momentum of the ripplon can be in
any direction, so the direction of the phonon is decoupled from the direction of the incident
atom. As we find these phonons are confined to angles θ = 50 ± 15◦, we rule out this process.

What we believe is happening is that condensing atoms readily create ripplons and a
large ripplon population builds up on the surface of the liquid helium. The ripplons strongly
interact with each other and rapidly come into thermal equilibrium on a timescale ≈10−6 s
at T = 0.2 K [37]. They form a moving group because the integrated parallel component of
momentum of the atoms is given to the ripplon system as a whole. On a slower timescale,
there are ripplon–ripplon interactions that create low-energy phonons, r1 + r2 → l3 [37]. The
created phonons are centred about a direction which again preserves the parallel component
of momentum in the created phonon system.

We can estimate the temperature of the ripplons from the flux of energy delivered by the
condensing atoms and the decay rate of the ripplon system. The ripplon density can decay in
two ways: by the creation of phonons, and by ripplons propagating away from the area where
they were created. As this area has dimensions of order 1 mm2 and a ripplon with energy 0.2 K
has a velocity 60 m s−1 then the characteristic timescale is of order 10−3/60 = 1.6 × 10−5 s.
The time will be longer due to ripplon interactions. This time is larger than the inverse of the
phonon creation rate for ripplons of the same energy, so we only consider loss due to phonon
creation.

From Reynolds’ results [37] we find that the decay rate to the production of phonons can
be expressed as

�3 = 4h̄ω3 p2

3πρc3
n(ω) (6)

where h̄ω and h̄ p are the energy and momentum of the ripplon respectively, n(ω) =
[exp(h̄ω/kB T ) − 1]−1, ρ is the density of 4He and c is the velocity of sound in 4He. We
have dropped the term −n(2ω) in equation (65) in [37] as there are no phonons in the cold
liquid 4He to create ripplons.

The rate of energy loss of ripplons is equal to the rate of energy gain by the created
phonons, Ė p, and is given by

Ė p =
∫ ∞

0
2�3h̄ωN(ω)n(ω) dω (7)

where N(ω) is the density of ripplon states given by

N(ω) = Aω1/3

3πα4/3
(8)

where A is the area of 4He surface. The factor 2 in equation (6) is because two ripplons are
lost on each scattering. We assume that ω = αp3/2 where p is the wavevector of the ripplon
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and α = (σ/ρ)1/2 = 1.546 × 10−3 J1/2 m1/2 kg−1/2 using the value of the surface tension
σ = 3.546 × 10−4 J m−2 [38] and ρ = 145 kg m−3. Evaluating this integral we find

Ė p = 8Ak20/3
B

9π2α8/3ρc3h̄14/3 T 20/3
r

∫ ∞

0

x17/3

(ex − 1)2
dx (9)

where Tr is the ripplon temperature. The integral = 4.51.
We measured the atom flux from the heater in the same experimental run when the liquid

level was below the bolometer. We found that the time dependence of the atom flux in the
normal direction is consistent with the evaporation from heated liquid helium at temperature
T . The number of atoms with wavevectors between k and k + dk that leave the helium surface
between θ and θ + dθ and between φ and φ + dφ is

h̄k3 dk

8π3m
exp

(
− h̄2k2

2mkB T

)
exp

(
− L

kB T

)
sin θ cos φ dθ dφ δAhτp (10)

where L is the latent heat per atom, m is the mass of a 4He atom, δAh is the area of the
heated liquid helium film and τp is the length of time of the short heater pulse. With a pulse
power of 0.5 mW we find that the atom signal as a function of time gives a heater temperature
Th = 0.8 K. From equation (9) and h̄k = ml/t where l is the path length of the atom beam,
we calculate the number of atoms that arrive between t and t + dt on the surface of the liquid
as

h̄2k5 dt

8π3ml
exp

(
− h̄2k2

2mkB T

)
exp

(
− L

kB T

)
sin θ cos φ dθ dφ δAhτp. (11)

The energy flux, Ėa delivered on a small area δAl of the surface whose normal is at an
angle θ to the beam at time t , where t � τp, is then given by

Ėa = cos θm3l2δAhδAlτp

8π3h̄3t5

(
ml2

2t2
+ kB L

)
exp

( −ml2

2t2kB T

)
exp

( −L

kB T

)
(12)

for an atom beam perpendicular to the heater.
The atoms arriving at the surface of the liquid increase the ripplon temperature, Tr , and

the ripplons create phonons which propagate away from the surface. From the conservation
of energy and putting A = δAl . we find∫ t

0
Ėa dt =

∫ Tr (t)

Ti

C(Tr )δAl dTr +
∫ t

0
Ė p dt (13)

where C(Tr ) is the heat capacity of the ripplons per unit area which is given by

C(Tr ) = 7k7/3T 4/3
r

9πα4/3h̄4/3

∫ ∞

0

x4/3 dx

ex − 1
. (14)

The value of the integral is 1.685. The solution of the rate equation is shown in figure 8.
The curve labelled ‘flux-in’ is the energy flux Ėa on the helium surface arising from the
condensing atoms when the heater temperature is 1.13 K for 2 µs. Because a spectrum of
atoms is created, the flux at the liquid surface is dispersed over ≈30 µs. The curve labelled
‘flux-out’ is the energy flux carried away by the created phonons, Ė p. We see that the phonon
energy flux follows the atom energy flux in amplitude and with only a small time lag of ≈3 µs
at the start. This is due to the relatively small energy required to create the ripplon population.
This energy is essentially supplied in the first few microseconds of the atom flux. In figure 8,
the ripplon temperature is shown as a function of time. We see that the ripplon temperature
rises in ≈10 µs to Tr = 0.27 K. It decays on a very long timescale due to phonon emission.
This long time follows from the strong temperature dependence of the phonon emission rate,
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(dotted curve), the calculated energy flux from the surface carried away by the created phonons,
‘flux-out’ (solid curve) and the temperature of the ripplons as a function of time. The heater pulse
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Figure 9. Calculated energy flux on the bolometer due to phonons created from ripplons and the
measured signal with φ = 45◦ and θ = 45◦; the heater pulse is 8 mW and 2 µs giving Th = 1.13 K.
The curves are normalized at the peaks.

T 20/3
r , in equation (5). For example, when Tr drops from 0.20 to 0.15 K, the phonon creation

rate drops by a factor of 6.
In figure 9 we compare the phonon energy flux from ripplons to the measured signal at

θ = 45.4◦. We see that the fit is good for the leading edge, which gives us confidence in the
ripplon picture. However, the signal decays faster than that calculated which we suspect is
due to ripplons escaping from the small area where they are produced. The time difference is
consistent with our estimate of the ripplon escape time made earlier.
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Figure 10. Signals of the low- and high-energy phonons as a function of heater pulse length
φ = 45◦ and θ = 62◦; the heater pulse is 8 mW. The high-energy phonons disappear at 3 µs due
to surface spoiling at high atom fluxes. The same vertical scale is used for all the curves which are
offset vertically.

4.4. Heater power and pulse length dependence

The quantum condensation phonon signal and the multi-phonon signal from ripplons behave
differently as a function of heater power and pulse length. This is clearly shown by the signals
in figure 10 where the high-energy phonon signal has almost disappeared when the pulse
length has increased to 3 µs. Figures 11 and 12 show that the time-integrated low-energy
phonon signals increase linearly with heater power and pulse length. Such behaviour follows
if the energy in the ripplons is directly proportional to the energy of the atoms that condense
from one pulse. For this, the length of the atom pulse on the liquid surface must be short on
the timescale of the ripplon loss rate to other than phonons. When the pulse length is long
compared to this time then we would expect a proportionality constant that is smaller and
depends on the branching ratio of the two losses, to phonons and to other than phonons, which
will be a function of the temperature of the ripplons.

In contrast, the quantum condensation phonon signal shows a maximum as a function of
both heater power and pulse length. We attribute this to the free surface of the liquid helium
being spoiled when the flux of atoms is too large. The one atom to one phonon signal is
concentrated into angles around θ = 60◦ by the conservation laws expressed in equations (1)
and (2). For equation (2) it is assumed that the surface has translational invariance. If it
does not but the surface height changes gradually, the equations apply locally and the created
phonons are angularly dispersed so weakening their flux around these angles. However, when
the surface is rough, on the scale of ≈10×k−1

‖ , then the equations become even less applicable.
We would expect the spoiling to increase with the ripplon density and hence with the atom
flux.

So we can now qualitatively understand the behaviour of the quantum condensation
phonon signal. At low atom fluxes, the signal initially increases linearly but, as the atom
flux is increased, the spoiling of the surface is increased and the sharp phonon signal ceases
to increase and eventually drops to zero. This happens when the created phonons are spread
over such a large solid angle that their signal disappears into the noise.
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Figure 11. Signals integrated over time, for the low-energy phonons from ripplons and the high-
energy phonons as a function of heater pulse power. φ = 45◦ and θ = 62◦; the heater pulse is
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Figure 12. Signals integrated over time, for the low-energy phonons from ripplons and the high-
energy phonons as a function of heater pulse length. φ = 45◦ , θ = 62◦ and the heater pulse is
8 mW.

5. The creation of R+ rotons

5.1. Signal at the R+ roton angle

By far the largest signal in figure 4 is at the angle for one atom to one R+ roton processes.
Although we shall conclude that this is evidence for this quantum condensation process, the
attribution is not completely straightforward. The first, and most significant, question concerns
what we are detecting at this roton angle. Over the course of very many experiments on
propagating excitations through liquid 4He to a bolometer in the liquid, we have never seen
a signal which we can attribute to rotons. We can, however, detect R+ rotons by quantum
evaporation and we can find the best heater conditions for producing ballistic R+ rotons, which
are low power and long pulses, typically 2 mW and 10 µs. So we know that we can arrange for
a bolometer in the liquid to be in an R+ roton flux, albeit with an accompanying low-energy
phonon flux.
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In quantum evaporation we can measure the time of flight for the combined R+ roton and
atom path, and also the angle of refraction expressed in equation (2). Both these measurements
show that a wide spectrum of R+ rotons is created by the heater and can propagate, without
decay, over distances of order 10 mm to the surface of the liquid [4, 39]. The time of flight of
71 µs for 6.5 mm in the liquid and 6.6 mm in the vacuum shows that R+ rotons of energy εR+ =
12.5 K are present. At the other end of the roton energy scale, scattering experiments [43, 44]
show that R+ rotons with energy εR+ ≈ 10 K (q = 2.1 Å−1, vg = 166 m s−1) are also created.
The angular distribution of atoms from R+ rotons at an angle of incidence of 14◦ is consistent
with a number density of rotons proportional to q2 /[exp(εR+/kB TR+) − 1] with TR+ between
1 and 1.5 K [4, 15, 45]. So the evidence is that a wide spectrum of R+ rotons is created by a
heater and, most importantly for interpreting the condensation results, can propagate without
decay over many millimetres. The number of R+ rotons with energy >2.5 K is small, due to
the exponential decrease with energy, and so their presence is increasingly difficult to detect.

When we try and detect these heater-generated R+ rotons in the liquid 4He with a detector,
usually a Zn bolometer,we see only a large low-energy phonon signal. This travels at 238 m s−1

and so lasts for essentially the time of the heater pulse as the bolometer relaxation time is short,
<1 µs. The R+ roton flux is dispersed with group velocities between 0 and ≈ 238 m s−1. The
very slow R+ rotons are most dispersed and so will have a very low flux from a pulsed source.
Hence their signal disappears into the noise. However, rotons with velocity somewhat slower
than 238 m s−1 should be well separated in time from the low-energy phonons and have a
relatively large flux. Indeed, such rotons have been seen in roton–roton scattering experiments
where quantum evaporation was used to detect them [43, 44].

There are two possible reasons why the R+ rotons are not detected by a bolometer in the
liquid 4He. The first is that the number of rotons created by the heater is so much smaller
than the number of phonons that it is difficult to see a small and featureless signal just as
the bolometer and the electronics are recovering from the large phonon signal. This recovery
involves higher order poles in the frequency response and so the last stage of the recovery is not
a simple exponential decay with one time constant. The second possibility is that R+ rotons
do not easily create phonons in the bolometer, which is the first stage of the detection process,
prior to the energy going into the electron system. It is indeed likely that rotons have a high
probability of reflection from the solid surface of the detector, with a mode change and with
little energy or momentum exchange with the solid. We consider these possibilities in the next
section.

Returning to the condensation signal at the R+ roton angle, we conclude that as rotons
created at the surface can propagate without decay to the bolometer, the signal is due to the
rotons being directly detected by the bolometer. We are seeing them, in this case, because
they are the dominant excitation flux on the bolometer. The roton flux from condensation is
much larger than from a heater because of the much higher probability of atoms creating rotons
(≈0.4). This higher flux compensates for their weak interaction with the bolometer.

In figure 13 we show typical atom to R+ roton signals at various bath temperatures. The
fastest part of the signal at 83 mK arrives at 71 µs which corresponds to an atom with energy
5.3 K and an R+ roton with energy 12.46 K. As the temperature is raised the roton flux is
attenuated by the rotons scattering with the thermal phonons. The behaviour is similar to that
found by quantum evaporation [27] where it is found that theory [46] gives a good description
of the behaviour. The front of the signal is attenuated first, as the temperature is increased, so
it is clear that the faster, higher energy R+ rotons are much more strongly attenuated than the
slower, lower energy ones.

The R+ roton signal at the lowest temperatures increases linearly with the heater power as
shown in figure 14, although this will not continue indefinitely. In figure 15 we show the roton
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Figure 14. The one atom to one R+ roton signal, integrated over time, as a function of heater
power. φ = 45◦, θ = 15◦ and the heater pulse is 2 µs.

signal as a function of angle at various heater powers. The angular width increases slightly with
heater power in this range. However, at higher powers the width increases substantially [6]
due to surface spoiling.

5.2. Creation and detection probabilities

To show that there is a consistent picture in evaporation and condensation, we must consider
the probabilities of heaters and atoms creating rotons and the sensitivity of the bolometer in
detecting rotons and atoms.

We first consider a heater immersed in liquid 4He and estimate the fraction of electrical
energy that goes to creating R+ rotons. Relatively long and low power pulses (10 µs,
2 mW mm−2) are best for creating ballistic R+ rotons. This compares to the short and
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Figure 15. The one atom to one R+ roton signal, integrated over time, as a function of angle for
various heater powers. φ = 45◦ and the heater pulse is 2 µs. The results are normalized at 10◦ .

higher power (100 ns, 20 mW mm−2) pulses that are necessary to create high-energy phonons
(εp > εc = 10 K) from low energy phonons. In both cases many low-energy phonons are
created by the heater.

Rotons are most readily detected by quantum evaporation. In fact, the results presented in
this paper are the first clear evidence that rotons can be detected by a bolometer in the liquid.
To measure the quantum evaporation signal we rotated the heater and the collimator, used in
the condensation experiment, to be in the liquid in order to create a beam of rotons directed at
the free surface of the liquid, in the perpendicular direction. The atoms, quantum evaporated
by the rotons, are detected by a bolometer which is set at several angles, φ, about the normal
in the vacuum above the liquid. First the energy in the atom signal is integrated over time,
which we define as F(φ), and, second, over angle to give the energy E (QE)

a using the relation

E (QE)
a = 2π R2

A

∫ φmax

0
F(φ) sin(φ) dφ (15)

where R = 6.6 mm is the distance from the bolometer to the surface of the liquid along the
axis defined by the collimator; F(φ) is the energy that goes into the area, A, of the bolometer.
We asume that this is the area of the superconducting track: 1 mm2 in these experiments. If the
bolometer is not uniformly sensitive, then the value of E (QE)

a will be greater. After numerically
integrating equation (14) we find the energy in the atoms is E (QE)

a = 4.1 × 10−13 J for 2 mW
and 10 µs heater pulses.

The energy in the heater pulse is Eh = 2 × 10−8 J. Let ph+ be the fraction of the heater
energy that gets converted to R+ rotons, g be the fraction of the rotons that get through the
collimation and p+a be the probability that one R+ roton evaporates one atom. We assume that
the rotons are created with a cosine distribution so that the flux in the direction normal to the
heater is twice the average flux. Then g = 2�col/2π , where �col is the solid angle subtended
by the collimator aperture nearest the heater. For the aperture 0.4 mm × 1 mm, at a distance
4.5 mm from the heater, �col = 1.98 × 10−2 and hence g = 6.29 × 10−3.

We next assume that p+a = 0.35, which is consistent with the transmission experiment [47]
and other estimates [40, 41]. By equating energies we find the following equation for ph+:

ph+ = E (QE)
a

Eh gp+a
(16)
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and substituting the values given above into equation 12 we obtain ph+ = 9.3 × 10−3. In [42]
we found that 0.5% of the heater energy went to creating large-wavevector R+ rotons, on the
basis that the probability of quantum evaporation is one and that the R+ rotons are emitted
isotropically. If we use the present assumptions of p+a = 0.35 and a cosine distribution then
ph+ = 7.7 × 10−3, which is essentially the same as we find here. So we see that under
optimized pulse conditions only ≈1% of the heater energy goes to R+ rotons, the remainder
going to low-energy phonons. The density of these phonons is too low for them to create a
significant number of high-energy phonons.

We now turn to the condensation results and do a similar analysis. We take the measured
data, similar to those in figure 3, and integrate over time and angle to find the total detected
energy in the R+ roton signal is E (C)

+ = 5.1 × 10−14 J for a heater pulse of W = 8 mW and
tp = 2 µs. We assume that all the heat goes into evaporating atoms. The fraction of atoms
that gets through the first collimator is again g = �col/π as the atoms from a heater have a
cosine distribution. From the slowest arriving R+ roton signal we calculate that only atoms
with εa > 3 K create detectable R+ rotons. Assuming that the heater temperature is governed
by the evaporation heat loss, we calculate that the heater temperature is 1.13 K for 8 mW
heater pulses. For this temperature the fraction, hε , of atoms evaporated with energy >3 K we
calculate to be 0.51. So the energy, E (C)

a , which includes the 7.16 K potential energy, in the
atoms that get through the collimator and condense on the liquid surface is given by

E (C)
a = Wtp ghε (17)

giving E (C)
a = 5.13 × 10−11. If we call the probability of an atom creating a R+ roton pa+ and

the fraction of the R+ roton energy that goes into the bolometer p+b, then the total energy in
the R+ roton signal E (C)

+ , integrated over time and angle, is given by

E (C)
+ = E (C)

a pa+ p+b. (18)

Using this equation and taking pa+ = 0.35 we find p+b = 2.8 × 10−3.
We are now in the position to see why we do not detect rotons when both the heater

and bolometer are in the liquid. A low-power heater pulse (around 2 mW mm−2) creates
both low-energy phonons and R+ rotons. The low-density, low-energy phonons decay as they
propagate and reach a phonon energy εp ≈ 0.5 K by the time they reach the bolometer. From
equation (4) we see that ppb = p(bg)

pb = 4.8 × 10−4 for these phonons detected by a rough
bolometer, where essentially all the detection is via the background channel. As a check, this
value of ppb gives the correct magnitude for the phonon signal, from long low-energy pulses
(5 mW, 5 µs), directly detected in the liquid helium. We see that ppb is an order of magnitude
smaller than p+b = 2.7 × 10−3.

The ratio of the time-integrated energies, in the bolometer, of the R+ roton and phonon
signals is given by the ratio of the creation probabilities multiplied by the ratio of the
transmission probabilities into the bolometer, i.e.

E+

E p
= ph+

(1 − ph+)

p+b

ppb
(19)

and substituting ph+ = 9.3 × 10−3, p+b = 2.8 × 10−3, ppb = 4.8 × 10−4, the phonon
transmission for a rough bolometer, we find E+/E p = 5.6 × 10−2. We see that the energy in
the R+ roton bolometer signal is more than an order of magnitude smaller than that in the low-
energy phonon bolometer signal. As the R+ roton signal is dispersed in time but the phonon
signal is not, the peak R+ roton signal will be more than two orders of magnitude lower than
the peak phonon signal. This means that the roton signal is just too small to be detected in this
situation. However, we can detect the same flux of rotons by quantum evaporation because
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R+ rotons evaporate atoms with high probability (≈0.35) and all the atoms are detected by
the bolometer as they condense on the 4He film covering the bolometer with essentially unit
probability.

In the condensation experiment we can directly detect the R+ roton beam because the
roton beam is much more intense than from a heater immersed in the liquid. The reason for
this is that atoms create rotons with a high probability, ≈0.4, while a heater creates them with
a low probability, ≈9.3 × 10−3. They are also not obscured by low-energy phonons.

6. Conclusions

Our experiments on the condensation of a beam of 4He atoms onto cold liquid 4He show that
both phonons and R+ rotons are created in one-to-one processes. We detect these quantum
condensed phonons if they have energy εp > 10 K, as these phonons do not decay and so
remain in a small solid angle with a measurable flux. There is no reason to suppose that low-
energy phonons, εp < 10 K, are not also created by quantum condensation. However, these
phonons decay and are then spread over a larger solid angle, which makes them impossible to
detect. The probability that a condensing atom will create a phonon with εp > 10 K is low.
We estimate pap = 9.4 × 10−3.

Condensing atoms have a much higher probability of creating R+ rotons. Transmission
measurements through a slab of liquid 4He give the average value of the product of the con-
densation and evaporation probability as pa+ p+a = 0.12 [47]. If we assume pa+ = p+a then
pa+ = 0.35. Corresponding to this high value, a large flux of R+ rotons is incident on the
bolometer and so R+ rotons can be directly detected. This is the first clear evidence for the
direct detection of R+ rotons, although they can be detected by quantum evaporation. From
our results, we estimate that the probability of an R+ roton giving its energy to the bolometer is
p+b = 2.8 × 10−3. This is similar to that for a high-energy phonon and an order of magnitude
larger than that for a low-energy phonon (εp = 0.5 K) detected by a rough bolometer where
the background channel dominates.

We show that directly detecting R+ rotons from a heater with the bolometer in the liquid
is very difficult as the signal from the low-energy phonons obscures the potential signal from
the R+ rotons. We estimate that a heater using long and low-power pulses to optimize the
production of R+ rotons only gives ph+ = 9.3 × 10−3 of its energy to the R+ rotons and the
balance goes to producing low-energy phonons. It is clear that condensing atoms can create a
much higher flux of R+ rotons than a heater in liquid 4He.

We find there is no detectable signal due to R− rotons. This is not unexpected as
the quantum evaporation probability p−a is two orders of magnitude lower than that for
R+ rotons [3]. A signal 1/300 of the R+ roton signal would not have been detectable.

Our experiments show that ripplons are the most likely excitations to be produced by
condensing atoms. The probability of ripplon creation is par = (1 − pa+ − pap) ≈ 0.65. The
ripplon population rapidly increases in the initial stages of the atom pulse because the heat
capacity of the ripplons is very low. The ripplon density comes into a dynamic equilibrium,
with the decay rate to phonons balancing the creation rate due to condensing atoms. We
derive the rate equations and use Reynolds’ expression, [37], for the ripplon lifetime due to the
creation of phonons. We find that the ripplon temperature rises to Tr = 0.27 K. The energy
in the created phonons has essentially the same time dependence as the energy released by
the condensing atoms because of the low heat capacity of the ripplons. Indeed, we find that
the phonon signal calculated on this basis agrees reasonably well with the measured signal as
shown in figure 9.

The ripplons created by condensing atoms are an interesting system as they constitute a
hot surface on otherwise cold liquid 4He. They are in thermal equilibrium because of their
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Table 1. Table of probabilities.

ph+ = 9.3 × 10−3 Heater creating R+ rotons with ε+ > 10 K
phpl = 0.98 Heater creating low-energy phonons, phpl = 1 − ph+ − phph

phph ≈ 1 × 10−2 Heater creating high-energy phonons;
depends on the heater temperature

p+b = 2.8 × 10−3 Rotons giving energy to the bolometer

p pk
pb = 7.9 × 10−3 Phonons giving energy to the bolometer

via the peak channel; independent of phonon frequency

pbg
pb = 9.5 × 10−4εp εp < 5 K; phonons giving energy to the bolometer

via the background channel

= 4.8 × 10−3 εp > 5 K

ps H = 0.1εp εp < 5 K; transmission from solid Zn to liquid helium and
averaged over phonons in the solid Zn

= 0.5 εp > 5 K
ppa ≈ 2.2 × 10−3 Phonon quantum evaporation
pap ≈ 9.4 × 10−3 Phonon quantum condensation
p+a = 0.35 R+ roton quantum evaporation [40]
pa+ = 0.34 R+ roton quantum condensation,

from average pa+ p+a = 0.12 [47] and p+a = 0.35
par = 0.65 Atom creating ripplons, from par = (1 − pa+ − pap)

p−a = p(ε−) p(ε−) = 2.3 × 10−4 exp[0.9(ε− − 8.6)] [16]

rapid three-ripplon scattering, [37], and the population can decay by ripplon escape and by
creating phonons. The present work shows that ripplons can be investigated by detecting these
created phonons.

We have analysed the size of the various signals that we have detected, in terms of the input
energy and the sequence of probabilities involving getting through the collimation, creation
processes at the liquid helium surface and detection probabilities. As many of these estimated
values are new, we summarise them in table 1.

We derived a value for the probability ppa, for a phonon with εp = 10 K to quantum-
evaporate one atom. The value of ppa = 2.2 × 10−3 is a quarter of that of pap = 9.4 × 10−3.
Because of the uncertainties in the various estimates (we are accounting for a difference of over
six orders of magnitude between input and detected energies) we cannot say that ppa 	= pap.
For R+ rotons and atoms the values of p+a and pa+ are much closer. If we take p+a = 0.35 [40]
and the average value of p+a pa+ = 0.12 [47] we see that pa+ = 0.34. In [28] it is argued, from
unitarity and time reversal symmetry applied to just atoms, phonons, R− rotons and R+ rotons
in one-to-one processes, that pea = pae, where e is an excitation in the bulk 4He. The above
values show that this may well be true for R+ rotons.

Just as quantum evaporation has enabled the study of ballistic high-energy phonons and
rotons, so too quantum condensation promises to further the study of roton–roton interactions.
The high flux of R+ rotons produced by condensation will enable new scattering experiments
to be done.

The most important conclusion from these experiments is that condensing helium atoms
can produce phonons and R+ rotons in one-to-one processes. Quantum condensation, the time
reverse of quantum evaporation, exists.
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